GEAR PUMP for Spacecraft Thermal Control

Technology and design issued from R&T CNES.

- > 2 manufactured prootypes
- Cumulated test duration1 year
- Correlated performance model

Main benefits

Pump performances in conformance with known S/C manufacturer expectations:

- ✓ Flow rate (150 l/h)
- ✓ Pressure rise (DPMAX = 1.5 bar)
- ✓ Operating temperature (TQUALIF = +85 °C)
- ✓ Two phases fluid functioning (tolerant to bubbles)
- ✓ Limited sub-cooling

Next steps

- > EM Pump Test (mid-2020)
- > Pump lifetime demonstration with EM Model (begins in 2020)
- CDR Review and Qualification campaign (begins in 2020)

Keys features

Working Fluid Ammonia / Water

 $T_{START-UP} = -70 \degree C$ $T_{MAX FLUID} = +85 \degree C$

Nominal Flow rate 150 l/h (0.041 l/s) Maximum pressure rise

1.5 bar (21.76 psi)

Mass

5 kg (without electronic box)

On demand for other fluide

Working fluid

Electrical consumption

45 W (without electronic box)

Industrialization of processes

Decrease production costs Manufacture small series (e.g.

4-10 pump per year)

GEAR PUMP

